CHAPITRE 1 – LE SECOND DEGRE 1ère partie

Ce chapitre présente les trois formes sous lesquelles peut écrire une fonction du second degré...

I – Fonction polynôme du second degré

<u>Définition</u>: On appelle **fonction polynôme de degré 2** toute fonction f définie sur \mathbb{R} par une expression de la forme :

$$f(x) = ax^2 + bx + c$$

où les coefficients a, b et c sont des réels donnés avec $a \neq 0$.

Vidéo: mathssa.fr/seconddegre (de 0 à 3mns30s)

Remarque:

Une fonction polynôme de degré 2 s'appelle également fonction trinôme du second degré ou par abus de langage "trinôme".

Exemples et contre-exemples :

- $-f(x) = 3x^2 7x + 3$
- $-g(x) = \frac{1}{2}x^2 5x + \frac{3}{5}$
- $-h(x) = 4 2x^2$
- -k(x) = (x-4)(5-2x) sont des fonctions polynômes de degré 2.
- -m(x) = 5x 3 est une fonction polynôme de degré 1 (fonction affine).
- $-n(x) = 5x^4 7x^3 + 3x 8$ est une fonction polynôme de degré 4.

II – Fonction polynôme du second degré sous forme factorisée

1.Racines – forme factorisée :

Définition:

Soit f une **fonction polynôme de degré 2**. Les racines de ce polynôme, si elles existent, sont les solutions de l'équation f(x) = 0.

Exemples: soit $f(x) = x^2 - 3x$. f est bien une fonction polynome du second degré (a = 1, b = -3, c = 0)

$$\overline{f(x) = x \times x - 3 \times x} = (x - 3)x$$

$$f(x) = 0 \Leftrightarrow x - 3 = 0 \text{ ou } x = 0$$

 $\Leftrightarrow x = 3 \text{ ou } x = 0$

Les racines du polynôme f sont 0 et 3.

soit $f(x) = 4x^2 - 1$. f est bien une fonction polynome du second degré (a = 4, b = 0, c = -1)

$$f(x) = 0 \iff 4x^2 = 1 \iff x^2 = \frac{1}{4} \iff x = -\frac{1}{2} \text{ ou } x = \frac{1}{2}$$

Les racines du polynôme f sont $-\frac{1}{2}$ et $\frac{1}{2}$.

Propriété:

Soit f une **fonction polynôme de degré 2** dont l'expression est $f(x) = ax^2 + bx + c$ ayant deux racines distinctes x_1 et x_2 . Alors, f peut s'écrire sous la **forme factorisée** : $f(x) = a(x - x_1)(x - x_2)$

Non exigible!

Soit f une fonction polynôme de la forme $f(x) = ax^2 + bx + c$ ayant deux racines distinctes x_1 et x_2 . Puisque x_1 est racine de ce polynôme, on a $f(x_1) = 0$, soit $ax_1^2 + bx_1 + c = 0$, soit $c = -ax_1^2 - bx_1$.

Alors $f(x) = ax^2 + bx - ax_1^2 - bx_1 = ax^2 - ax_1^2 + bx - bx_1 = a(x^2 - x_1^2) + b(x - x_1)$ $f(x) = a(x - x_1)(x + x_1) + b(x - x_1) = (x - x_1)(a(x + x_1) + b)$. (1)

Puisque x_2 est racine de ce polynôme, on a $f(x_2) = 0$, soit $(x_2 - x_1)(a(x_2 + x_1) + b) = 0$.

Comme $x_1 \neq x_2$, on a: $a(x_2 + x_1) + b = 0$, soit $b = -a(x_2 + x_1)$. (2)

On reporte dans (1): $f(x) = (x - x_1)(a(x + x_1) - a(x_2 + x_1)) = a(x - x_1)(x + x_1 - x_2 - x_1).$

On en déduit : $f(x) = a(x - x_1)(x - x_2)$.

Exemples:

soit f une fonction polynôme du second degré de racines 2 et 5.

Alors une expression de f(x) est f(x) = a(x-2)(x-5).

soit f une fonction polynôme du second degré de racines 0 et -3.

Alors une expression de f(x) est f(x) = a(x-0)(x-(-3)) = ax(x+3).

Exercice : expression factorisée à l'aide de deux racines

f est la fonction polynôme du second degré de racines -2 et 4 telle que f(2) = -2. Déterminer f(x).

f(x) s'écrit sous la forme f(x) = a(x - (-2))(x - 4) = a(x + 2)(x - 4)

$$f(2) = -2 \Leftrightarrow a(2+2)(2-4) = -2$$

$$\Leftrightarrow -8a = -2$$

$$\Leftrightarrow a = \frac{-2}{-8} = \frac{1}{4}$$

$$f(x) = \frac{1}{4}(x+2)(x-4)$$

Enigme : factoriser le polynôme du second degré $f(x) = 2x^2 + 12x - 14$.

2.Somme et produit des racines

Soit f un polynôme du second degré dont l'expression factorisée est f(x) = 3(x-2)(x-5)

Les racines sont 2 et 5. La somme des racines est S=7 et le produit est P=10. Valeurs de a, b et c. f(x) = 3(x-2)(x-5) $= 3(x^2 - 5x - 2x + 10)$ $= 3(x^2 - 7x + 10)$ $= 3x^2 - 21x + 30$ a = 3, b = -21, c = 30

Conjecture: $S = -\frac{b}{a}$ et $P = \frac{c}{a}$

Propriété:

Soit f une **fonction polynôme de degré 2** dont l'expression est $f(x) = ax^2 + bx + c$ ayant deux racines distinctes x_1 et x_2 . Alors, la somme des racines est $S = -\frac{b}{a}$ et le produit des racines est $P = \frac{c}{a}$.

Preuve:

Prenons une fonction du second degré sous sa **forme factorisée** : $f(x) = a(x - x_1)(x - x_2)$.

Appelons S la somme des racines $S=x_1+x_2$ et P leur produit $P=x_1x_2$

Développons f(x).

$$\begin{split} f(x) &= a(x \times x - x \times x_2 - x_1 \times x + x_1 \times x_2) \\ &= a(x^2 - x_2 x - x_1 x + x_1 x_2) \\ &= a(x^2 - (x_2 + x_1) x + x_1 x_2) \\ &= a(x^2 - S x + P) \\ &= ax^2 - aS x + aP \quad \text{or } f(x) = ax^2 + bx + c \\ \text{On a donc } -aS &= b \ et \ aP = c \quad \text{soit } S = -\frac{b}{a} \ \text{et } P = \frac{c}{a} \quad (a \neq 0) \end{split}$$

Retour sur l'énigme : factoriser le polynôme du second degré $f(x) = 2x^2 + 12x - 14$.

1 est une racine évidente de f car f(1) = 2 + 12 - 14 = 0.

Soit x_2 la deuxième racine.

On a
$$S = -\frac{b}{a}$$
 et $P = \frac{c}{a}$. D'où $1 + x_2 = -\frac{12}{2} = -6$ et $1 \times x_2 = \frac{-14}{2} = -7$.

$$f(x) = 2(x - 1)(x + 7)$$

Exercice : factoriser le polynôme du second degré $f(x) = 3x^2 - 2x - 8$.

3. Signe d'un polynôme du second degré sous forme factorisée

Soit f un polynôme du second degré dont l'expression factorisée est f(x) = 3(x-2)(x+5)Déterminons le signe de f(x).

Le signe de 3(x-2)(x+5) dépend du signe de chaque facteur x-2 et x+5.

$$x - 2 = 0 \Leftrightarrow x = 2$$
 $x + 5 = 0 \Leftrightarrow x = -5$

$$x + 5 = 0 \Leftrightarrow x = -5$$

x	-∞	-5	2	+∞
x-2	-	-	- 0	+
<i>x</i> + 5	-	0	+	+
(x-2)(x+5)	+	0 -	. 0	+

Rappel: les fonctions affines 1x-2 et 1x+5 ont un coefficient directeur de 1 et sont donc croissantes.

Il ne reste plus qu'à tenir compte du signe du coefficient a. Ici a > 0 donc le tableau de signe reste inchangé. Si a étant négatif, les signes seraient inversés.

Et si on généralise avec le polynôme $f(x) = a(x - x_1)(x - x_2)$ (avec $x_1 < x_2$)

x	-∞	<i>x</i> ₁		x_2	+∞	
$x-x_1$	-	0	+		+	
$x-x_2$	-		-	0	+	
f(x)	Signe de <i>a</i>	0	Signe de (–a)	0	Signe de <i>a</i>	

<u>Propriété</u>: Soit f une fonction polynôme de degré 2 dont l'expression est $f(x) = ax^2 + bx + c$ ayant deux racines distinctes x_1 et x_2 . Alors, le polynôme f est du signe de a « à l'extérieur des racines » (et du signe de -a à l'intérieur)

Application: résoudre l'inéquation suivante: (-3x + 6)(x + 4) > 0

On pose
$$f(x) = (-3x + 6)(x + 4)$$

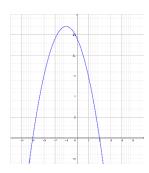
$$=-3(x-2)(x+4)$$
 (on factorise par -3 dans l'expression $-3x+6$)

f est un polynôme du second degré dont les racines sont 2 et -4 et le coefficient a = -3. f est du signe de a à l'extérieur des racines. On en déduit le tableau de signes :

х	-∞		-4	2		+∞
f(x)		-	0	+	0	-

$$f(x) > 0 \iff x \in]-4; 2[$$
 $S =]-4; 2[$

$$S = 1 - 4:21$$



III- Fonction polynôme du second degré sous forme canonique

Vidéo:mathssa.fr/seconddegre (3mns30s à 7 mns)

Propriété:

Pour tout polynome du second degré $f(x)=ax^2+bx+c$, il existe deux réels α et β tels que $ax^2+bx+c=a(x-\alpha)^2+\beta$

L'expression $a(x-\alpha)^2 + \beta$ est la forme canonique du polynôme du second degré $ax^2 + bx + c$

Non exigible!

DEMONSTRATION Soit la fonction polynôme f telle que $f(x) = ax^2 + bx + c$, où a est un réel non nul.

En mettant le coefficient a en facteur, on obtient : $ax^2 + bx + c = a(x^2 + \frac{b}{a}x + \frac{c}{a})$

On peut considérer $x^2 + \frac{b}{a}x$ comme le début du développement du carré de $\left(x + \frac{b}{2a}\right)$:

$$\left(x + \frac{b}{2a}\right)^2 = x^2 + \frac{b}{a}x + \frac{b^2}{4a^2} \text{ d'où } x^2 + \frac{b}{a}x = \left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2}$$

D'où:
$$f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} \right]$$

$$f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{b^2 - 4ac}{4a^2} \right]$$
 (après réduction au même dénominateur)

$$f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$$
 (en notant Δ le réel $b^2 - 4ac$)

$$f(x) = a\left(x - \frac{-b}{2a}\right)^2 + \left(\frac{-\Delta}{4a}\right)\operatorname{soit} f(x) = a(x - \alpha)^2 + \beta \operatorname{avec} \alpha = \frac{-b}{2a} \operatorname{et} \beta = \frac{-\Delta}{4a}.$$

Exemple: $f(x) = x^2 + 2x + 3 = x^2 + 2x + 1 + 2 = (x+1)^2 + 2 = 1(x-(-1))^2 + 2$

 $\alpha = 1$, $\alpha = -1$, $\beta = 2$

Définition:

soif f la fonction polynôme du second degré $f(x) = ax^2 + bx + c$. (a non nul) On appelle **discriminant** de f le réel $\Delta = b^2 - 4ac$.

Vidéo: les maths en chanson: mathssa.fr/splendide (3 mns)

Propriété:

$$\alpha = -\frac{b}{2a}$$
 et $\beta = -\frac{\Delta}{4a}$.

La forme canonique du polynôme du second degré ax^2+bx+c est: $ax^2+bx+c=a(x+\frac{b}{2a})^2-\frac{\Delta}{4a}$.

Remarque: $ax^2 + bx + c = a\left((x + \frac{b}{2a})^2 - \frac{\Delta}{4a^2}\right)$.

Vidéos: mathssa.fr/canonique1 (6mns) et mathssa.fr/canonique2 (11mns)

Exercice : déterminer la forme canonique à l'aide des identités remarquables

Déturnine la forme canonique de la fonction
$$f$$
 définie par :
$$f(x) = 2x^2 - 20x + 10.$$

$$f(x) = 2\left(x^2 - 10x\right) + 10$$

$$= 2\left(x^2 - 10x + 25 - 25\right) + 10$$

$$= 2\left((x - 5)^2 - 25\right) + 10$$

$$= 2\left((x - 5)^2 - 50\right) + 10$$

$$= 2\left((x - 5)^2 - 50\right) + 10$$

$$= 2\left((x - 5)^2 - 50\right) + 10$$

$$= 2\left((x - 5)^2 - 40\right).$$

Exercice : déterminer la forme canonique à l'aide des formules

Déterminer la forme canonique de la fonction
$$f$$
 définire par :
$$f(x) = 2x^2 - 20x + 10.$$

On identifie les coefficients a, b et c.

$$a = 2$$
, $b = -20$ et $c = 10$.

On calcule le discriminant
$$\Delta = b^2 - 4ac = (-20)^2 - 4 \times 2 \times 10 = 320$$

$$\alpha = -\frac{b}{2a} = -\frac{-20}{4} = 5$$
et $\beta = -\frac{\Delta}{4a} = -\frac{320}{8} = -40$

$$ax^2 + bx + c = a(x - \alpha)^2 + \beta$$

$$2x^2 - 20x + 10 = 2(x - 5)^2 - 40$$