CHAPITRE 4 – produit scalaire 1ère partie

I. Cercle trigonométrique et radian

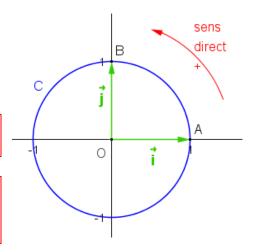
Vidéo: mathssa.fr/trigo (3mns 30s)

1.Le cercle trigonométrique

<u>Définition</u>: Sur un cercle, on appelle sens direct, sens positif ou sens trigonométrique le sens contraire des aiguilles d'une montre.

Définition:

Dans le plan muni d'un repère orthonormé $(0; \vec{i}, \vec{j})$ et orienté dans le sens direct, le **cercle trigonométrique** est le cercle de centre O et de rayon 1.

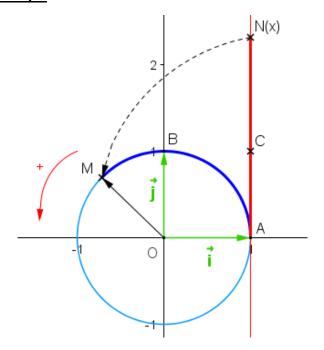


2. Enroulement d'une droite autour du cercle trigonométrique

Dans un repère orthonormé $(0; \vec{i}, \vec{j})$, on considère le cercle trigonométrique et une droite (AC) tangente au cercle en A et orientée telle que $(A; \vec{j})$ soit un repère de la droite.

Si l'on « enroule » la droite autour du cercle, on associe à tout point N d'abscisse x de la droite orientée un unique point M du cercle.

La longueur de l'arc \widehat{AM} est ainsi égale à la longueur AN.



3.Le radian

Vidéo: mathssa.fr/trigo (de 3mns32 à 8mns35s)

A lire mais ne pas noter:

La longueur du cercle trigonométrique est égale à 2π .

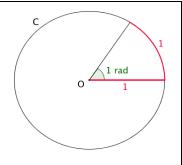
En effet, son rayon est 1 donc $P = 2\pi R = 2\pi \times 1 = 2\pi$

Ainsi, à un tour complet sur le cercle, on peut faire correspondre le nombre réel 2π .

On définit alors une nouvelle unité d'angle : le radian, tel qu'un tour complet mesure 360° ou 2π radians.

<u>Définition</u>:

On appelle **radian**, noté *rad*, la mesure de l'angle au centre qui intercepte un arc de longueur 1 du cercle.



4. Correspondance degrés et radians

Ainsi, à 2π radians (tour complet), on fait correspondre un angle de 360°.

Par proportionnalité, on obtient les correspondances suivantes :

Angle en degré	0°	30°	45°	60°	90°	180°	360°
Angle en radian	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	2π

<u>Méthode</u>: Passer des degrés aux radians et réciproquement

vidéo: mathssa.fr/angle (6mns42s)

- 1) Donner la mesure en radians de l'angle α de mesure 33°.
- 2) Donner la mesure en degrés de l'angle β de mesure $\frac{3\pi}{8}$ rad.

2π	?	$\frac{3\pi}{8}$
360°	33°	?

1)
$$\alpha = \frac{2\pi \times 33}{360} = \frac{11\pi}{60}$$

2)
$$\beta = \frac{\frac{3\pi}{8} \times 360}{2\pi} = 67.5^{\circ}$$

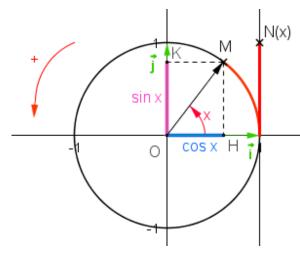
II- Cosinus et sinus d'un angle

Vidéo: mathssa.fr/trigo (de 11mns 45s à 18mns12s)

1.Définitions:

Dans le plan muni d'un repère orthonormé $(0; \vec{i}, \vec{j})$ et orienté dans le sens direct, on considère un cercle trigonométrique de centre O.

Pour tout nombre réel x, considérons le point N de la droite orientée d'abscisse x. À ce point, on fait correspondre un point M sur le cercle trigonométrique. On appelle H et K les pieds respectifs des perpendiculaires à l'axe des abscisses et à l'axe des ordonnées passant par M.



Définitions:

- Le **cosinus** du nombre réel x est l'abscisse de M et on note $\cos x$ ou $\cos(x)$.
- Le **sinus** du nombre réel *x* est l'ordonnée de M et on note **sin** *x ou sin*(*x*).

2. Propriétés immédiates:

Propriétés:

1)
$$-1 \le \sin(x) \le 1$$
 et $-1 \le \cos(x) \le 1$

2)
$$cos^{2}(x) + sin^{2}(x) = 1$$

3)
$$\sin(-x) = -\sin(x)$$
 et $\cos(-x) = \cos(x)$

4)
$$cos(x + 2k\pi) = cos(x)$$
 où k entier relatif

5)
$$\sin(x + 2k\pi) = \sin(x)$$
 où k entier relatif

Remarque : $(sin(x))^2$, par exemple, se note $sin^2(x)$

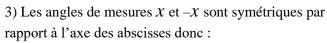
Démonstrations:

 $1)\,Le$ cercle trigonométrique est de rayon 1 donc :

$$-1 \le \sin(x) \le 1 \text{ et } -1 \le \cos(x) \le 1.$$

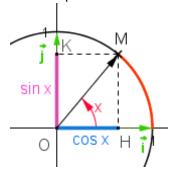
2) Dans le triangle OHM rectangle en H, le théorème de Pythagore permet d'établir que :

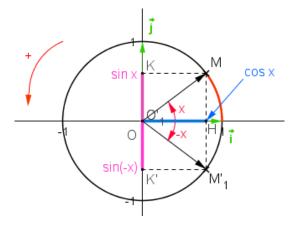
$$\cos^2(x) + \sin^2(x) = OM^2 = 1.$$



$$\sin(-x) = -\sin(x)$$
 et $\cos(-x) = \cos(x)$.

4) 5) Aux points de la droite orientée d'abscisses x et $x+2k\pi$ ont fait correspondre le même point du cercle trigonométrique.





3. Valeurs remarquables des fonctions sinus et cosinus :

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

Remarque :il faut absolument connaître ces valeurs par coeur ou utiliser un procédé mnémotechnique : par exemple on remplit d'abord la $2^{\text{ème}}$ colonne, en écrivant $1 = \frac{\sqrt{4}}{2}$ et $0 = \frac{\sqrt{0}}{2}$ puis pour les cosinus , on fait décroître l'entier à l'intérieur de la racine et pour le sinus , on augmente l'entier à l'intérieur de la racine.

<u>Utilisation de la calculatrice :P</u>our effectuer des calculs trigonométriques à l'aide de la calculatrice, il faut préalablement sélectionner l'unité de mesure d'angle (radian ou degré). Quand l'unité n'est pas précisé , on considère que l'angle est en radian . Exemple : $\sin(\frac{\pi}{12}) = \frac{\sqrt{6}-\sqrt{2}}{4}$, $\tan(25^\circ) \approx 0,466$

III- Définition géométrique du produit scalaire

Vidéo: mathssa.fr/prodscal (de 0 à 5mns20s)

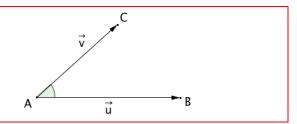
1.Norme d'un vecteur

<u>Définition</u>: Soit un vecteur \vec{u} et deux points A et B tels que $\vec{u} = \overline{AB}$. La **norme du vecteur** \vec{u} , notée $||\vec{u}||$, est la distance AB.

2.Définition du produit scalaire-1ère expression du produit scalaire

<u>Définition</u>: Soit \vec{u} et \vec{v} deux vecteurs du plan. On appelle **produit scalaire** de \vec{u} par \vec{v} , noté \vec{u} . \vec{v} , le nombre réel défini par :

- $-\vec{u} \cdot \vec{v} = 0$, si l'un des deux vecteurs \vec{u} et \vec{v} est nul
- $-\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times cos(\vec{u}; \vec{v})$, dans le cas contraire.



 \vec{u} . \vec{v} se lit " \vec{u} scalaire \vec{v} ".

Remarques:

• Si \overrightarrow{AB} et \overrightarrow{AC} sont deux représentants des vecteurs non nuls \overrightarrow{u} et \overrightarrow{v} alors :

$$\vec{u} \cdot \vec{v} = \overrightarrow{AB} \cdot \overrightarrow{AC} = ||\overrightarrow{AB}|| \times ||\overrightarrow{AC}|| \times \cos(\widehat{BAC})$$

• Si \vec{u} et \vec{v} sont des vecteurs colinéaires de même sens , $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(0) = ||\vec{u}|| \times ||\vec{v}||$

 \vec{u}

• Si \vec{u} et \vec{v} sont des vecteurs colinéaires de sens contraire,

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\pi) = -||\vec{u}|| \times ||\vec{v}||$$

• $\vec{u} \cdot \vec{u} = ||\vec{u}|| \times ||\vec{u}|| = ||\vec{u}||^2$

 \vec{u} . \vec{u} se note aussi \vec{u}^2 et est appelé carré scalaire de \vec{u} .

$$\vec{u}^2 = \|\vec{u}\|^2$$

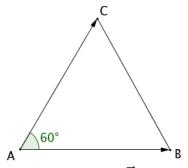
Méthode : Calculer un produit scalaire à l'aide du cosinus

Soit un triangle équilatéral ABC de côté a.

Calculer, en fonction de a, le produit scalaire \overrightarrow{AB} . \overrightarrow{AC} .

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \|\overrightarrow{AB}\| \times \|\overrightarrow{AC}\| \times \cos(\widehat{BAC})$$

= $a \times a \times \cos(60)$
= $0.5a^2$



Attention : Le produit scalaire de deux vecteurs est un nombre réel. Écrire par exemple \vec{u} . $\vec{v} = \vec{0}$ est une maladresse à éviter !

Lire mais ne pas noter :

La notion de produit scalaire est apparue pour les besoins de la physique. Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand *Hermann Grassmann* (1809 ; 1877).

Il fut baptisé produit scalaire par William Hamilton (1805; 1865) en 1853.