Exercices 14,15,16,17,18,19,21p254-255, 35,36,37,39,40,41,43,45,46,47,52,60,61,63,64p256-257 23,24,25,26,,29,31,32,33p255,69,70,71,72,73,75p258

- 14 Soit une droite d de vecteur directeur \overrightarrow{u} (1; 3).
- **1.** Justifier que le vecteur \overrightarrow{n} (3 ; -1) est un vecteur normal à d.
- 2. Donner les coordonnées de deux autres vecteurs normaux à d.

14

- 1. $\vec{n} \cdot \vec{u} = 1 \times 3 + 3 \times (-1) = 0$ donc \vec{n} est normal à d.
- **2.** Les vecteurs $2\vec{n}(6;-2)$ et $3\vec{n}(9;-3)$ sont des vecteurs normaux à d.
- **15** Soit les points A (2 ; 3) et B (–2 ; 8).
- 1. Calculer les coordonnées d'un vecteur directeur de la droite (AB).
- 2. En déduire que le vecteur de coordonnées (5 ; 4) est un vecteur normal à la droite (AB).

15

- 1. \overrightarrow{AB} est un vecteur directeur de la droite (AB). $\overrightarrow{AB}(-4;5)$.
- 2. $\vec{n}(5; 4)$ vérifie $\overrightarrow{AB} \cdot \vec{n} = 0$ donc c'est un vecteur normal à (AB).
- 16 On considère la droite d d'équation 4x 3y + 11 = 0.
- **1.** Expliquer pourquoi le vecteur de coordonnées (4; -3) est un vecteur normal à d.
- 2. Donner une équation d'une autre droite ayant le même vecteur normal.

- 1. Un vecteur directeur de d est $\vec{d}(3;4)$. De plus on a $\vec{n}(4;-3)$ qui vérifie $\vec{d} \cdot \vec{n} = 0$.
- 2. 4x 3y + 2 = 0 par exemple.
- Proposer une équation d'une droite d dont un vecteur normal est \vec{n} (8 ; -5).
- 178x 5y + 3 = 0 convient.

1. Parmi les vecteurs ci-dessous, lequel n'est pas un vecteur normal à d?

$$\vec{a} \cdot \vec{a} (-2; 1)$$

b.
$$\vec{b}$$
 (4; -2)

$$\vec{c}$$
 (1; 2)

d.
$$\vec{d}$$
 (10; –5)

2. Parmi les équations ci-dessous, laquelle ne peut pas être une équation de d?

a.
$$2x - y = 0$$

b.
$$x + 2y = 0$$

$$-2x + y + 1 = 0$$

d.
$$y = 2x - 3$$

18

1. Réponse c.

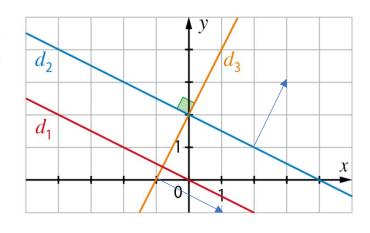
2. Réponse b.

19 Associer à chaque droite représentée ci-contre son équation.

a.
$$E_1: x + 2y - 4 = 0$$

b.
$$E_2: x + 2y = 0$$

c.
$$E_3: 2x - y + 2 = 0$$



Dans E1 si x=0, 2y-4=0 soit 2y=4 et y=2 A(0;2) de plus E1 a pour vecteur normal (1;2)

E1 d2 E2:d1 E3:d3

- Soit d la droite passant par le point A(3;0), et de vecteur normal \vec{n} (1;7).
- **1.** Justifier que la droite d a pour équation : x + 7y + c = 0, où c est un nombre réel.
- **2.** Sachant que A appartient à la droite d, déterminer le nombre c, puis une équation de d.

- 1. Une droite de vecteur normal $\vec{n}(a;b)$ a une équation de la forme ax + by + c = 0. Ici a = 1 et b = 7. Donc une équation de d est de la forme x + 7y + c = 0.
- **2.** On doit avoir $1 \times 3 + 7 \times 0 + c = 0$. Donc c = -3. Une équation de d est x + 7y - 3 = 0.
- 35 Soit d la droite de vecteur normal \vec{n} (5; 2) et passant par le point A de coordonnées (1 ; 3). Déterminer une équation de d.

Capacité 1, p. 251

- **35** Une équation de *d* est 5x + 2y 11 = 0.
- 36 Dans chacun des cas suivants, donner une équation de la droite d, passant par le point A et de vecteur normal \vec{n} .
- **a.** A(3; 8) et \vec{n} (7; -1) **b.** A(-2; 0) et \vec{n} (-2; 3)

- **a.** 7x y 13 = 0
- **b.** -2x + 3y 4 = 0
- 37 Soit d la droite passant par le point A(1; 3) et de vecteur normal \vec{n} (-2; 5). Dire, en justifiant, si les points B(0; 2,6) et C(4; 1) appartiennent à la droite d.
- 37 Une équation de d est -2x + 5y 13 = 0. Les coordonnées du point B vérifient l'équation, et celles de C ne la vérifient pas. Donc B d et C $\notin d$.
- 39 Soit les points A(-1; 3), B (5; 1) et C(2; -1), et d la droite perpendiculaire à (AB) passant par C.
- **1.** Donner un vecteur normal à la droite d.
- **2.** Déterminer une équation de d.

- **1.** \overrightarrow{AB} est normal à d.
- 2. 6x 2y 14 = 0
- Soit les points E(2; -1), F(6; 5) et G(-3; 1), et d la droite perpendiculaire à (EF) passant par G. Déterminer une équation de d.
- 40 La droite d est perpendiculaire à (EF), donc un vecteur normal à d est $\overrightarrow{EF}(4;6)$. Une équation de d est donc de la forme 4x + 6y + c = 0. Comme d passe par G, $4x_G + 6y_G + c = 0$. Par conséquent, $4 \times (-3) + 6 \times 1 + c = 0$, soit -12 + 6 + c = 0 et donc c = 6. Une équation de d est : 4x + 6y + 6 = 0. En divisant par 2 chaque membre, on obtient : 2x + 3y + 3 = 0 qui est une autre équation de d.
- 41 Soit les points A(3;5), B(6; –1) et C(1;4). Déterminer une équation de la hauteur issue de B dans le triangle ABC.

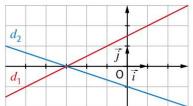
$$41 2x + y - 11 = 0$$

- 43 Soit les points A(1; 2) et B(-1; 4).
- 1. Calculer les coordonnées du milieu J du segment [AB].
- 2. Déterminer une équation de la médiatrice du segment [AB].

2.
$$-2x + 2y - 6 = 0$$

45 On a représenté ci-dessous les droites d_1 et d_2 d'équations respectives :

$$d_1: x - 2y + 3 = 0$$
 et $d_2: x + 3y + 3 = 0$.



- 1. Donner les coordonnées d'un vecteur directeur de la droite d_1 .
- **2.** Soit d_3 la perpendiculaire à la droite d_1 passant par le point A(1; 2).
- a. Donner les coordonnées d'un vecteur normal à d_3 .
- **b.** Déterminer une équation de d_3 .
- **3. a.** Donner les coordonnées d'un vecteur directeur de d_2 .
- **b.** Déterminer une équation de la perpendiculaire à d_2 passant par l'origine du repère.

45

- 1. $\overrightarrow{d_1}(2;-1)$
- **2. a.** $\overrightarrow{d_1}(2;-1)$
- **b.** d_3 : 2x y = 0
- 3. a. $\overrightarrow{d_2}(-3;1)$
- **b.** -3x + y = 0

46 Soit d la droite d'équation 2x - 5y + 3 = 0.

- **1.** Donner un vecteur directeur de la droite d.
- **2.** En déduire une équation de la droite Δ , perpendiculaire à d et passant par le point E(-2;7).

46

- 1. $\vec{d}(5;2)$
- 2. 5x + 2y 4 = 0

Dans chacun des cas suivants, écrire une équation de la droite passant par A(1; 2) et perpendiculaire à la droite d dont on donne une équation.

a. 2x + 9y - 1 = 0

b. 3x - 5y + 2 = 0

a.
$$-9x + 2y + 5 = 0$$

b.
$$5x + 3y - 11 = 0$$

Pour les exercices 52 à 56, donner les coordonnées d'un vecteur normal à d_1 et celles d'un vecteur normal à d_2 .

Capacité 2, p. 251

52
$$d_1: 2x - 5y + 3 = 0$$

et
$$d_2: y = -3x + 5$$

et
$$d_2: y = 4x - 10$$

54
$$d_1: y = x$$

et
$$d_2: y = 1$$

$$\mathbf{55} d_1 : 11x + 1 = 0$$

et
$$d_2:-x+y=7$$

56
$$d_1: x + y = 0$$

et
$$d_2: 2y-1=0$$

$$\vec{n_1}(2;-5)$$
 et $\vec{n_2}(-3;-1)$

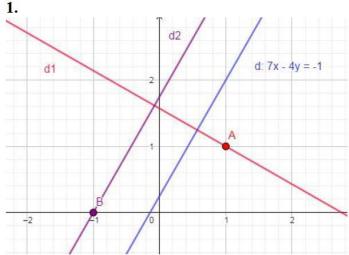
$$\vec{n_1}(2;7) \text{ et } \vec{n_2}(4;-1)$$

$$\vec{n_1}(1;-1) \text{ et } \vec{n_2}(0;1)$$

$$\vec{n_1}(11;0) \text{ et } \vec{n_2}(-1;1)$$

$$\vec{n_1}(1;1) \text{ et } \vec{n_2}(0;2)$$

- 60 Soit d la droite d'équation 7x 4y + 1 = 0.
- 1. Tracer d dans un repère.
- 2. Tracer chacune des droites suivantes puis en donner une équation.
- **a.** la droite d_1 perpendiculaire à d passant par A(1 ; 1).
- **b.** la droite d_2 parallèle à d passant par B(-1; 0).



2. a.
$$d_1 : 4x + 7y - 11 = 0$$

b. $d_2 : 7x - 4y + 7 = 0$

- Soit d_1 et d_2 les droites d'équations respectives : $m_1x y + p_1 = 0$ et $m_2x y + p_2 = 0$ où m_1 et m_2 sont des réels non nuls.
- **1.** Donner un vecteur normal à d_1 et un vecteur normal à d_2 .
- **2.** Montrer que d_1 et d_2 sont perpendiculaires si, et seulement si, $m_1m_2=-1$.
- **3. a.** Écrire l'équation réduite de chacune des droites d_1 et d_2 .
- **b.** Que représentent les réels m_1 et m_2 pour les droites d_1 et d_2 ?

- 1. $\overrightarrow{n_1}(m_1; -1)$ et $\overrightarrow{n_2}(m_2; -1)$.
- 2. d_1 et d_2 sont perpendiculaires si et seulement si $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$ sont orthogonaux, c'est-à-dire si et seulement si $\overrightarrow{n_1} \cdot \overrightarrow{n_2} = m_1 m_2 + 1 = 0$.
- **3. a.** $d_1 : y = m_1 x + p_1$ et $d_2 : y = m_2 x + p_2$.
- b. Ce sont les coefficients directeurs respectifs des deux droites.
- 63 On considère la droite d d'équation x + y 1 = 0 et le point A(1; 4). Soit H le projeté orthogonal de A sur d.
- **1.** Déterminer une équation de la droite Δ , perpendiculaire à d passant par A.
- 2. En déduire les coordonnées du point H.

1.
$$\Delta$$
: $-x + y - 3 = 0$

2.
$$H(-1; 2)$$

- 64 On considère la droite d d'équation x + 2y 4 = 0 et le point A(3 ; 3). Soit H le projeté orthogonal de A sur d.
- **1.** Déterminer une équation de la droite Δ , perpendiculaire à d passant par A.
- 2. En déduire les coordonnées du point H.

1.
$$\Delta$$
: $-2x + y + 3 = 0$

23 L'une des équations ci-dessous est celle d'un cercle. Dire laquelle, et préciser le rayon et les coordonnées du centre de ce cercle.

a.
$$E_1: x^2 + y^2 = -5$$

b.
$$E_2: (x-2)^2 + (y-1)^2 = 4$$

c.
$$E_3: x + 2y - 1 = 0$$

d.
$$E_4: x^2 + y + 1 = 0$$

23 a. E₁ n'est pas une équation de cercle.

En effet, $x^2 + y^2 \ge 0$ (car somme de deux carrés) donc aucun couple (x; y) ne vérifie l'égalité $x^2 + y^2 = -5$.

b. E2 est une équation de cercle.

$$(x-2)^2 + (y-1)^2 = 4$$
 équivaut à $(x-2)^2 + (y-1)^2 = 2^2$.

Il s'agit donc du cercle de centre le point de coordonnées (2 ; 1) et de rayon 2.

- c. E3 est une équation de droite.
- d. E4 est une équation de parabole.

En effet, $x^2 + y + 1 = 0$ équivaut à $y = -x^2 - 1$. C'est une équation de la forme $y = ax^2 + bx + c$.

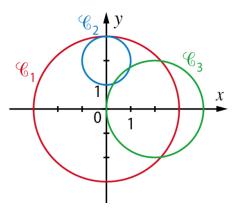
- Déterminer le rayon et les coordonnées du centre du cercle d'équation $(x 5)^2 + (y 7)^2 = 2$.
- 24 Cercle de rayon $\sqrt{2}$ et de centre (5; 7).

Associer à chaque cercle représenté ci-contre son équation.

a.
$$E_1: x^2 + y^2 = 9$$

b.
$$E_2$$
: $(x-2)^2 + y^2 = 4$

c.
$$E_3: x^2 + (y-2)^2 = 1$$



25

a.
$$C_1$$

$$\mathbf{c}$$
. C_2

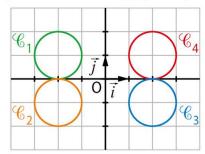
26 Associer à chaque cercle \mathscr{C}_1 , \mathscr{C}_2 , \mathscr{C}_3 et \mathscr{C}_4 son équation.

a.
$$(x-2)^2 + (y+1)^2 = 1$$

b.
$$(x+2)^2 + (y-1)^2 = 1$$

c.
$$(x + 2)^2 + (y + 1)^2 = 1$$

d.
$$(x-2)^2 + (y-1)^2 = 1$$



26 Tous les cercles ont pour rayon 1.

Le cercle \mathcal{C}_1 a pour centre le point de coordonnées (-2 ; 1). Une équation de \mathcal{C}_1 est donc $(x-(-2))^2+(y-1)^2=1^2$, soit $(x+2)^2+(y-1)^2=1$. Il s'agit de l'équation **b**.

Le cercle C_2 a pour centre le point de coordonnées (-2;-1). Une équation de C_2 est donc $(x-(-2))^2+(y-(-1))^2=1^2$, soit $(x+2)^2+(y+1)^2=1$. Il s'agit de l'équation c.

Le cercle \mathcal{C}_3 a pour centre le point de coordonnées (2;-1). Une équation de \mathcal{C}_3 est donc $(x-2)^2+(y-(-1))^2=1^2$, soit $(x-2)^2+(y+1)^2=1$. Il s'agit de l'équation **a.**

Le cercle C_4 a pour centre le point de coordonnées (2; 1). Une équation de C_4 est donc $(x-2)^2 + (y-1)^2 = 1^2$. Il s'agit de l'équation **d.**

Dans chacun des cas suivants, déterminer une équation du cercle de centre l'origine du repère et de rayon r.

a.
$$r = 1$$

b.
$$r = 2$$

$$r = \sqrt{3}$$

$$\frac{1}{a}$$
 $x^2 + y^2 = 1$

b.
$$x^2 + y^2 = 4$$

c.
$$x^2 + y^2 = 3$$

31 Dans chacun des cas suivants, déterminer une équation du cercle de centre A et de rayon 2.

- **a.** A(1;-1)
- **b.** A(0; 2)
- $\mathbf{c.} \ \mathsf{A}(-3;0)$

31

a.
$$(x-1)^2 + (y+1)^2 = 4$$

b.
$$x^2 + (y-2)^2 = 4$$

c.
$$(x+3)^2 + y^2 = 4$$

32 On considère le cercle \mathscr{C} de centre A(1 ; 1) passant par B(4 ; 5).

- **1.** Montrer que le rayon de $\mathscr C$ est égal à 5.
- **2.** Déterminer une équation de \mathscr{C} .

32 1. Le rayon de \mathcal{C} est AB.

$$AB = \sqrt{(4-1)^2 + (5-1)^2} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5.$$

Le rayon de C est bien égal à 5.

2. Une équation de C est : $(x - x_A)^2 + (y - y_A)^2 = 5^2$, soit $(x - 1)^2 + (y - 1)^2 = 25$.

1. Déterminer une équation du cercle de centre B(0; 5) et de rayon 7.

2. Montrer qu'elle peut s'écrire : $x^2 + y^2 - 10y - 24 = 0$.

33

1.
$$x^2 + (y - 5)^2 = 49$$

2. Il suffit de développer $(y-5)^2$.

69 Soit le cercle $\mathscr C$ de centre A(-3;1) et de rayon 6.

- 1. Déterminer une équation du cercle \mathscr{C} .
- **2.** Le point B(2; 4) appartient-il à \mathscr{C} ? Justifier.

Capacité 3, p. 251

1.
$$(x+3)^2 + (y-1)^2 = 36$$

2.
$$(2+3)^2 + (4-1)^2 = 34 \neq 36$$
 donc B \notin C.

70 Déterminer une équation du cercle de centre A et de rayon r dans chacun des cas suivants.

a.
$$A(-1;0)$$
 et $r=3$

b. A(3; -5) et
$$r = \sqrt{5}$$

70

$$\overline{\mathbf{a.}} (x+1)^2 + y^2 = 9$$

b.
$$(x-3)^2 + (y+5)^2 = 5$$

- 71 1. Écrire une équation du cercle de centre C(−6 ; −8) et de rayon 10.
- 2. Ce cercle passe-t-il par l'origine du repère ? Justifier.

71

1.
$$(x+6)^2 + (y+8)^2 = 100$$

2.
$$(0+6)^2 + (0+8)^2 = 36 + 64 = 100 \text{ donc } (0;0) \in C$$
.

- 72 1. Écrire une équation du cercle de centre I(-2; 3) et passant par le point A(1; 1).
- 2. Ce cercle passe-t-il par les points de coordonnées : (−1 ; −1), (−2 ; 16), (−15 ; 3) et (−4 ; 6) ?
 - 72 1. Le rayon du cercle est IA= $\sqrt{(1+2)^2 + (1-3)^2} = \sqrt{9+4} = \sqrt{13}$. Une équation de ce cercle de centre I(-2; 3) et de rayon $\sqrt{13}$ est : $(x-(-2))^2 + (y-3)^2 = (\sqrt{13})^2$, soit $(x+2)^2 + (y-3)^2 = 13$.
 - 2. $(-1+2)^2 + (-1-3)^2 = 1+16 = 17$ et $17 \neq 13$: le cercle ne passe pas par le point de coordonnées (-1; -1).

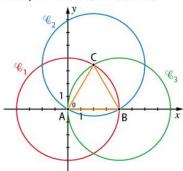
 $(-2+2)^2 + (16-3)^2 = 0^2 + 13^2$ et $13^2 \neq 13$: le cercle ne passe par le point de coordonnées (-2; 16).

 $(-15+2)^2+(3-3)^2=(-13)^2$ et $(-13)^2\neq 13$: le cercle ne passe par le point de coordonnées (-15:3).

 $(-4+2)^2 + (6-3)^2 = 4+9=13$: le cercle passe par le point de coordonnées (-4 ; 6)

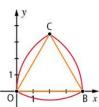
73 Histoire des maths

On considère les points B(4;0) et C(2; $2\sqrt{3}$).



- 1. Vérifier que le triangle OBC est équilatéral.
- **2.** Déterminer une équation de chaque cercle représenté cidessus : \mathscr{C}_1 de centre O et de rayon 4 ; \mathscr{C}_2 de centre C et de rayon 4 et \mathscr{C}_3 de centre B est de rayon 4.
- **3.** La courbe formée par les trois arcs de cercle colorés en rouge sur la figure ci-contre est appelée triangle de Reuleaux.

Quelle est la plus grande distance entre chaque sommet O, B ou C et un autre point de cette courbe ?



73

- 1. OB = OC = CB = 4
- **2.** $C_1: x^2 + y^2 = 16$, $C_2: (x-2)^2 + (y-2\sqrt{3})^2 = 16$ et $C_3: (x-4)^2 + y^2 = 16$.
- 3. Pour B : la plus grande distance entre B et un autre point de la courbe est 4 : c'est la distance entre B et tout point de la courbe reliant O et C, c'est-à-dire tout point de l'arc du cercle de centre B et de rayon 4.

On suit le même raisonnement pour O et C.

75 Déterminer l'ensemble des points M(x; y) tels que :

$$x^2 + y^2 - 6x + 2y + 5 = 0$$

et préciser les éléments caractéristiques de cet ensemble.

75
$$x^2 + y^2 - 6x + 2y + 5 = 0$$
 équivaut à $x^2 - 6x + y^2 + 2y + 5 = 0$.

$$\overline{\text{Or}}$$
, $x^2 - 6x = (x - 3)^2 - 9$ et $y^2 + 2y = (y + 1)^2 - 1$.

Par conséquent, $x^2 - 6x + y^2 + 2y + 5 = 0$ équivaut à $(x - 3)^2 - 9 + (y + 1)^2 - 1 + 5 = 0$, donc à $(x - 3)^2 + (y + 1)^2 = 5$, soit à :

$$(x-3)^2 + (y-(-1))^2 = (\sqrt{5})^2$$
.

L'ensemble des points recherché est le cercle de centre le point de coordonnées (3;-1) et de rayon $\sqrt{5}$.