Préparation du cours : chapitre 1

Vidéo: mathssa.fr/seconddegre (jusqu'à 3mns 30s)

Exercice 1

Soit la fonction du second degré définie par $f(x) = x^2 - 3x$

1. Identifier les coefficients a,b et c.

2. Résoudre l'équation f(x) = 0 point cours : racine d'un polynome

Exercice 2

Mêmes questions avec $f(x) = 4x^2 - 1$.

Exercice 3

Soit la fonction du second degré définie par $f(x) = 3x^2 - 9x + 6$.

1.Identifier *a*, *b* et *c*.

2.Calculer f(1) et f(2). Que peut on en déduire ?

3.Démontrer que f(x) = 3(x-1)(x-2). Que peut on en déduire ?

Point cours : factorisation d'un polynome du second degré à l'aide de 2 racines

Correction:

Exercice 1: Soit la fonction du second degré définie par $f(x) = x^2 - 3x$

1.
$$a = 1$$
, $b = -3$ et $c = 0$.

$$2. f(x) = 0 \Leftrightarrow x^2 - 3x = 0$$
$$\Leftrightarrow \mathbf{x} \times x - \mathbf{x} \times 3 = 0$$
$$\Leftrightarrow \mathbf{x}(x - 3) = 0$$

$$\Leftrightarrow x = 0 \text{ ou } x - 3 = 0$$

$$\Leftrightarrow x = 0 \ ou \ x = 3$$
 S={0;3}

point cours : racine d'un polynome

Soit f une fonction polynôme de degré 2. Les racines de ce polynôme, si elles existent, sont les solutions de l'équation f(x) = 0.

Exercice 2:
$$f(x) = 4x^2 - 1$$
.
1. $a = 4$, $b = 0$ et $c = -1$.
2. $f(x) = 0 \Leftrightarrow 4x^2 - 1 = 0$
 $\Leftrightarrow 4x^2 = 1$
 $\Leftrightarrow x^2 = \frac{1}{4}$
 $\Leftrightarrow x = \sqrt{\frac{1}{4}}$ ou $x = -\sqrt{\frac{1}{4}}$
 $\Leftrightarrow x = \frac{1}{2}$ ou $x = -\frac{1}{2}$ $S = \{\frac{1}{2}; \frac{1}{2}\}$

Exercice 3: Soit la fonction du second degré définie par $f(x) = 3x^2 - 9x + 6$.

1.
$$a = 3$$
, $b = -9$ et $c = 6$.

2.
$$f(1) = 3 \times 1^2 - 9 \times 1 + 6 = 0$$

$$f(2) = 3 \times 2^2 - 9 \times 2 + 6 = 0$$
 1 et 2 sont des racines de f...

3. Pour tout réel
$$x$$
, $3(x-1)(x-2) = 3(x^2 - 2x - 1x + 2)$
= $3(x^2 - 3x + 2)$
= $3x^2 - 9x + 6$
= $f(x)$

$$f(x) = 3(x-1)(x-2)$$

Point cours : factorisation d'un polynome du second degré à l'aide de 2 racines

Soit f une fonction polynôme de degré 2 dont l'expression est $f(x) = ax^2 + bx + c$ ayant deux racines distinctes x_1 et x_2 . Alors, f peut s'écrire sous la forme factorisée :

$$f(x) = \mathbf{a}(x - x_1)(x - x_2)$$

Exercice : somme et produit de racines

Soit f un polynôme du second degré dont l'expression factorisée est f(x) = 3(x-2)(x-5)

- 1. Déterminer S la somme des racines de f puis P le produit des racines.
- 2. Déterminer les valeurs de a, b et c.
- 3. Dans le cas général, exprimer S et P en fonction de a, b et c.

1.Les racines de f sont 2 et 5. S = 2 + 5 = 7 et $P = 2 \times 5 = 10$.

$$2. f(x) = 3(x-2)(x-5) = 3(x^2 - 5x - 2x - 10) = 3x^2 - 21x - 30$$

$$a = 3$$
, $b = -21$ et $c = -30$

$$3.S = -b/a \ etP = c/a$$

Exercice : signe d'un polynôme du second degré ayant deux racines

- 1. Soit f un polynôme du second degré dont l'expression factorisée est f(x) = 3(x-2)(x+5)Déterminer le signe de f(x).
- 2. Soit f un polynôme du second degré dont l'expression factorisée est f(x) = -4(x+1)(x-2)Déterminer le signe de f(x).

1.
$$x = 2 = 0 \iff x = 0$$

$$x-2=0 \Leftrightarrow x=2$$
 $x+5=0 \Leftrightarrow x=-5$

х	-∞	-5		2	+∞
x-2	-		-	0	+
x + 5	-	0	+		+
(x-2)(x+5)					
	+	0	-	0	+
3(x-2)(x+5)					
	+	0	-	0	+

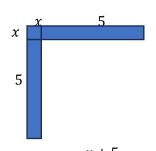
$$2.x + 1 = 0 \Leftrightarrow x = -1$$
 $x - 2 = 0 \Leftrightarrow x = 2$

	- ,,		,,			
x	-∞	-1		2	$+\infty$	
x + 1	-	0	+		+	
x-2	-		-	0	+	
(x+1)(x-2)						
	+	0	-	0	+	
-4(x-2)(x+5)						
	-	0	+	0	-	

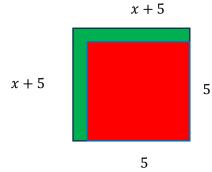
Cours : si f est un polynome du second degré ayant deux racines alors f est du signe de a à l'extérieur des racines

La méthode d'Al Khwarizmi

On construit un carré de coté x bordé par deux rectangles de cotés 5 (et x). On calcule l'aire de deux façons différentes.



Aire de la zone colorée : $x^2 + 5x + 5x = x^2 + 10x$



Aire du grand carré moins l'aire du petit :

On obtient donc $x^2 + 10x =$

La forme obtenue s'appelle

La du polynôme du second degré $ax^2 + bx + c$ est

Application 1: écrire les expressions suivantes en s'inspirant du modèle :

$$x^2 + 4x = \dots$$

$$x^2 + 25x = \dots$$

Application 2:cas général

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right)$$

$$= a\left(\dots - \frac{c}{a}\right)$$

$$= a\left(\dots - \frac{c}{aa^{2}}\right) \quad \text{on pose } \Delta = b^{2} - 4ac$$

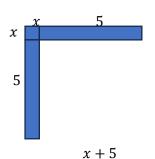
$$= a\left(\dots - \frac{c}{aa^{2}}\right)$$

Exercice: soit la fonction polynôme du second degré défini par $f(x) = 2x^2 - 20x + 10$. Déterminer sa forme canonique à l'aide des formules (on commencera par identifier a, b, c puis calculer Δ)

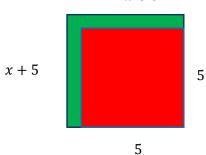
La méthode d'Al Khwarizmi

Modèle : la fonction polynome du second degré $x^2 + 10x$ peut aussi s'écrire sous la forme factorisée x(x+10) . Nous allons partir à la recherche d'une nouvelle forme.

On construit un carré de coté x bordé par deux rectangles de cotés 5 (et x). On calcule l'aire de deux façons différentes.



Aire de la zone colorée : $x^2 + 5x + 5x = x^2 + 10x$



Aire du grand carré moins l'aire du petit : $(x + 5)^2 - 25$

On obtient donc $x^2 + 10x = (x + 5)^2 - 25$

La forme obtenue s'appelle la forme canonique du polynôme du second degré x^2+10x

La forme canonique du polynôme du second degré $ax^2 + bx + c$ est $a(x - \alpha)^2 + \beta$

Application 1: écrire les expressions suivantes en s'inspirant du modèle :

$$x^{2} + 4x = (x + 2)^{2} - 4$$
$$x^{2} + 25x = (x + 5)^{2} - 25$$

Application 2:cas général

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right)$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2} + \frac{c}{a}\right)$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right) \text{ on pose } \Delta = b^{2} - 4ac$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}}\right)$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a}$$

$$\alpha = -\frac{b}{2a} \qquad \beta = -\frac{\Delta}{4a}$$

Exercice: soit la fonction polynôme du second degré défini par $f(x) = 2x^2 - 20x + 10$. Déterminer sa forme canonique à l'aide des formules (on commencera par identifier a, b, c puis calculer Δ) On identifie les coefficients a, b et c.

$$a = 2$$
, $b = -20$ et $c = 10$.

On calcule le discriminant $\Delta = b^2 - 4ac = (-20)^2 - 4 \times 2 \times 10 = 320$

$$\alpha = -\frac{b}{2a} = -\frac{-20}{4} = 5$$
et $\beta = -\frac{\Delta}{4a} = -\frac{320}{8} = -40$

$$ax^2 + bx + c = a(x - \alpha)^2 + \beta$$

$$2x^2 - 20x + 10 = 2(x - 5)^2 - 40$$