Préparation du cours chapitre 3 : notion de probabilité conditionnelle

Correction de l'activité 1p274

Cadres en entreprise

Dans une entreprise de 160 personnes, on compte 67 femmes. Parmi les personnes de cette entreprise, il y a 32 cadres dont 15 femmes.

2 Parmi les 160 personnes de cette entreprise, on en choisit une au hasard.

On considère les événements suivants :

- F: « la personne choisie est une femme »;
- C : « la personne choisie est un cadre ».
- **a.** Définir par une phrase les événements \overline{C} , $F \cap C$ et $F \cap \overline{C}$.
- **b.** Calculer les probabilités P(F), P(C), $P(\overline{C})$, $P(F \cap C)$ et $P(F \cap \overline{C})$.

	Femmes	Hommes	Total
Cadres	15		32
Autres employés			
Total	67		160

1.

	Femmes	Hommes	Total
Cadres	15	17	32
Autres employés	52	76	128
Total	67	93	160

2. a. \overline{C} : la personne choisie n'est pas cadre.

 $F \cap C$: la personne choisie est une femme et est cadre.

 $F \cap \overline{C}$: la personne choisie est une femme et n'est pas cadre.

3 a. La personne choisie est un cadre de l'entreprise.

Quelle est la probabilité que ce soit une femme ?

On note $P_{C}(F)$ cette probabilité, on dit que c'est la probabilité conditionnelle de F sachant C.

b. Calculer
$$\frac{P(\mathsf{F}\cap\mathsf{C})}{P(\mathsf{C})}$$
. Que constate-on ?

Que représentent en termes de probabilités les quotients $\frac{15}{67}$ et $\frac{52}{128}$?

3. a.
$$P_{\rm C}({\rm F}) = 15/32$$

b. $P(F \cap C) / P(C) = 15/32$, c'est la même valeur que $P_C(F)$.

4.
$$15/67 = P_F(C)$$
 et $52/128 = P_{\overline{C}}(F)$.

Préparation du cours chapitre 3 : arbre pondéré

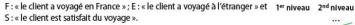
Correction de l'activité 3 p275

Agence de voyage

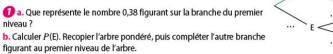
Une agence de voyage a effectué un sondage auprès de l'ensemble de ses clients pendant la période estivale. Ce sondage montre que :

- 38 % des clients voyagent en France ;
- 83 % des clients voyageant en France sont satisfaits;
- 78 % des clients voyageant à l'étranger sont satisfaits.

On interroge un client au hasard. On considère les événements suivants :



L'arbre construit ci-contre, appelé arbre pondéré, permet de représenter la situation.



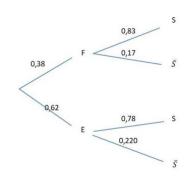
- 2 Puisque 83 % des clients voyageant en France sont satisfaits, on a $P_F(S) = 0.83$.
- a. Placer cette probabilité conditionnelle sur la branche du second niveau de l'arbre pondéré qui relie F à S.
- **b.** Justifier que $P_{\epsilon}(\overline{S}) = 0.17$.
- c. Compléter alors les branches figurant au second niveau de l'arbre pondéré.
- ${f 6}$ a. Rappeler les deux formules permettant de calculer $P(\mathsf{F}\cap\mathsf{S})$.
- b. Laquelle de ces deux formules permet de calculer cette probabilité ici ? Effectuer le calcul.
- c. Le chemin vert, qui passe par F puis S, est le chemin qui permet de réaliser l'événement F \cap S. Recopier et compléter la phrase suivante par la bonne opération :

Il fautles deux probabilités situées au-dessus des deux branches constituant le chemin vert pour obtenir $P(F\cap S)$.

1. a. 0,38 : la probabilité que le client ait voyagé en France.

b.
$$P(E) = 0.62$$

2. a.



b.
$$P_{\rm F}(\overline{\rm S}) = 1 - 0.83 = 0.17$$
.

1. a.
$$P(F \cap S) = P_S(F) \times P(S) = P_F(S) \times P(F)$$

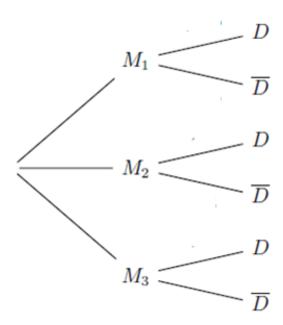
b.
$$P(F \cap S) = 0.3154$$
.

c. Il faut multiplier les probabilités situées au-dessus des deux branches pour obtenir $P(F \cap S)$.

Prépara Préparation du cours chapitre 3 : vers la formule des probabilités totales

Considérons le problème suivant : Trois machines M_1, M_2 et M_3 réalisent respectivement 20%,35% et 45% de la production d'une entreprise. On estime à 1,5% , 2% et 2% , les proportions de pièces défectueuses produites respectivement par M_1, M_2 et M_3 . On choisit une pièce au hasard dans la production et on s'intéresse à la probabilité de l'évènement D : « la pièce est défectueuse ».

Compléter l'arbre pondéré puis le tableau à double entrée page suivante. En déduire la valeur de P(D).



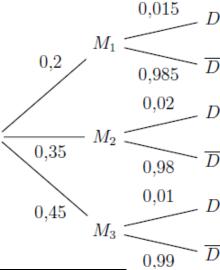
	M_1	M_2	M ₃	Total
D				
\overline{D}				
2				
Total				
20111				

.....

Vers la formule des probabilités totales

Considérons le problème suivant : Trois machines M_1, M_2 et M_3 réalisent respectivement 20%,35% et 45% de la production d'une entreprise. On estime à 1,5% , 2% et 2% , les proportions de pièces défectueuses produites respectivement par M_1, M_2 et M_3 . On choisit une pièce au hasard dans la production et on s'intéresse à la probabilité de l'évènement D : « la pièce est défectueuse ».

Compléter l'arbre pondéré puis le tableau à double entrée page suivante. En déduire la valeur de P(D).



	M ₁	M ₂	M ₃	Total
D	0,2 × 0,015 = 0,003	0.35×0.02 = 0.007	$0,45$ $\times 0,01$ $= 0,0045$	0,0145
\overline{D}	$0.2 \times 0.985 = 0.197$	0.35×0.98 = 0.343	0,45 × 0,99 = 0,4455	0,9855
Total	0,20	0,35	0,45	1

 $P(D) = P(D \cap M_1) + P(B \cap M_2) + P(B \cap M_3) = 0,003 + 0,007 + 0,0045 = 0,0145$ 1,45% des pièces sont défectueuses.