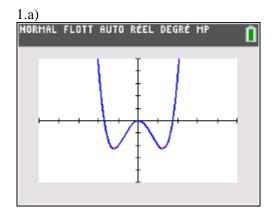
Correction des exercices sur le chapitre 14

Exercice 1: fonctions paires - impaires

Les questions 1 et 2 sont indépendantes

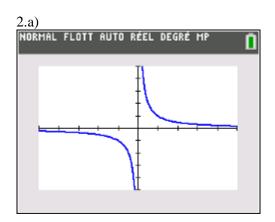
- 1. Soit la fonction f définie sur \mathbb{R} par $f(x) = x^4 3x^2$.
- a) Représenter la courbe de la fonction f à l'écran de votre calculatrice.
- b)Conjecturer la parité de la fonction f.
- c)Calculer f(-x) (on remplacera x par (-x) dans l'expression de f(x))
- d)Conclure.
- 2. Soit la fonction f définie sur \mathbb{R} privé de 0 par $f(x) = \frac{1}{x}$.
- a) Représenter la courbe de la fonction f à l'écran de votre calculatrice.
- b)Conjecturer la parité de la fonction f.
- c)Calculer f(-x) (on remplacera x par (-x) dans l'expression de f(x))
- d)Conclure.



b)Il semble que f est paire. (axe des ordonnées est axe de symétrie)

c)
$$f(-x) = (-x)^4 - 3(-x)^2 = (-x)(-x)(-x)(-x) - 3 \times (-x)(-x) = x^4 - 3x^2 = f(x)$$

d)On en déduit que f est paire.



b)Il semble que f est impaire. (l'origine est centre de symétrie)

c)
$$f(-x) = \frac{1}{-x} = -\frac{1}{x} = -f(x)$$

d)On en déduit que f est impaire.

Exercices 108b) 109a)p234

108 a.
$$x(x-1)(x-2) > 0$$
 b. $x^2(x+3) < 0$

b.
$$x^2(x+3) < 0$$

109 a.
$$(x^2 + 1)(5 - 10x) < 0$$
 b. $\frac{x^3}{3x - 12} \ge 0$

b.
$$\frac{x^3}{3x-12} \ge 0$$

108b)

$$x + 3 > 0$$
 (+) équivaut à $x > -3$ (à droite)

x	-∞	-3		0		+∞
χ^2	1			n		
X	T		т	U	т	
x + 3	-	0	+		+	
$x^{2}(x+3)$	-	0	+	0	+	

$$x^2(x+3) < 0$$
 $S =] - \infty; -3[$

$$S =]-\infty;-3[$$

109a)
$$x^2 + 1 \ge 1 > 0$$

$$5-10x>0$$
 (+) équivaut à $-10x>-5$ équivaut à $x<\frac{1}{2}$ (à gauche)

х	-∞	$\frac{1}{2}$		+∞
$x^2 + 1$	+		+	
5 - 10x	+	0	-	
$(x^2+1)(5$ $-10x)$	+	0	-	

$$(x^2 + 1)(5 - 10x) < 0$$
 $S =]\frac{1}{2}; +\infty[$

Exercices 57,58,59p231

Pour les exercices 57 à 59, résoudre dans \mathbb{R} chaque inéquation.

57 a.
$$5x^2 - 4 < 3x^2 + 10$$
 b. $-x^2 + 3 \ge -4x^2 + 6$

b.
$$-x^2 + 3 \ge -4x^2 + 6$$

58 a.
$$7 - 6x^2 \le x^2 - 14$$
 b. $-2x^2 + 1 > 3x^2 - 9$

b.
$$-2x^2 + 1 > 3x^2 - 9$$

59 a.
$$3x^2 + 1 \ge 4 - x^2$$
 b. $-7x^2 + 1 > 4$

b.
$$-7x^2 + 1 > 4$$

57a)

$$5x^2 - 4 < 3x^2 + 10$$
 équivaut à $5x^2 - 3x^2 < 10 + 4$ équivaut à $x^2 < 7$

$$S=]-\sqrt{7};\sqrt{7}[$$

57b)

$$-x^2+3 \ge -4x^2+6$$
 équivaut à $-x^2+4x^2 \ge 6-3$ équivaut à $x^2 \ge 1$

$$S=]-\infty;-1]\cup[1;+\infty[$$

58 a.
$$x \in]-\infty; -\sqrt{3}] \cup [\sqrt{3}; +\infty[$$
 b. $x \in]-\sqrt{2}; \sqrt{2}[$

b.
$$x \in]-\sqrt{2}; \sqrt{2}[$$

59 a.
$$x \in]-\infty; -\frac{\sqrt{3}}{2}] \cup [\frac{\sqrt{3}}{2}; +\infty[$$

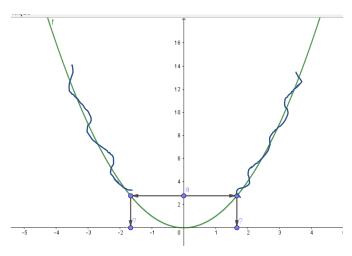
b. Pas de solution.

Exercices 113,114b)p234

- **113 1.** Construire le tableau de signes dans $\mathbb R$ du produit : $(x^2-3)(2x+4)$.
- **2. a.** En déduire le tableau de signes dans $[0; +\infty[$ du produit : $(x^2-3)(2x+4)$.
- **b.** En déduire les solutions dans $[0; +\infty[$ de l'inéquation :

$$(x^2-3)(2x+4)<0.$$

1.2x + 4 > 0 (+) équivaut à 2x > -4 équivaut à x > -2 (droite)



 $x^2 - 3 > 0$ équivaut à $x^2 > 3$ équivaut à $x \in]-\infty; -\sqrt{3}[\cup]\sqrt{3}; +\infty[$

x	-∞		- 2		$-\sqrt{3}$	0	√3		+∞
x ² - 3		+		+	0	_	0	+	
2x + 4		_	0	+		+		+	
$(x^2-3)(2x+4)$		_	0	+	0	-	0	+	

2. a.

x	0		$\sqrt{3}$		+∞
$(x^2-3)(2x+4)$		_	0	+	

b. L'ensemble solution de l'inéquation est $[0; \sqrt{3}[$.

114 Résoudre dans [0 ; +∞[les inéquations :

a.
$$(-2x+6)(4x-8) > 0$$
;

a.
$$(-2x+6)(4x-8) > 0$$
; **b.** $(x^2-7)(-3x+9) \le 0$.

$$-3x + 9 > 0$$
 (+) équivaut à $-3x > -9$ équivaut à $x < 3$ (gauche)

$$x^2 - 7 > 0$$
 équivaut à $x^2 > 7$ équivaut à $x \in]-\infty; -\sqrt{7}[\cup]\sqrt{7}; +\infty[$

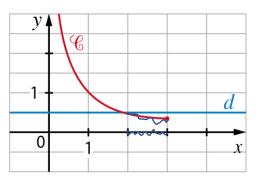
x	-∞		$-\sqrt{7}$	0	$\sqrt{7}$		3		+∞
$x^2 - 7$		+	0	-	0	+		+	
-3x + 9		+		+		+	0	-	
$(x^2 - 7)(-3x + 9)$	+		0	-	0	+	0	-	

x	0	$\sqrt{7}$	3		+∞
$(x^2-7)(-3x+9)$	-	0 +	0	-	

 $S=[0;\sqrt{7}]U[3;+\infty[$

Exercices 20p229,74p231,75p232,76,77,78p232

- **20** On a tracé ci-contre $\mathscr C$ sur]0;3] et la droite d d'équation y = 0.5.
- 1. Résoudre graphiquement dans]0; 3] l'équation $\frac{1}{r} = 0.5$.



2.a. Déterminer graphiquement

l'ensemble des points de $\mathscr C$ qui sont « au-dessous » de la droite d.

- **b.** Résoudre alors l'inéquation $\frac{1}{r}$ < 0,5 sur]0; 3].
- 1.La solution est x=2.

2a)b) Les solutions sont les réels de l'intervalle]2 ;3]

- 74 La courbe représentative de la fonction inverse est tracée ci-contre.
- 1. Résoudre graphiquement les équations :

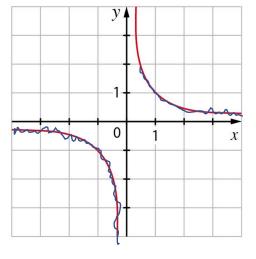
a.
$$\frac{1}{x} = -1$$
; **b.** $\frac{1}{x} = 2$.

b.
$$\frac{1}{x} = 2$$
.

2. Résoudre graphiquement les inéquations:

a.
$$\frac{1}{x} < -1$$
; **b.** $\frac{1}{x} < 2$.

b.
$$\frac{1}{x} < 2$$
.



74 1. a. x = -1 b. x = 0.5

b.
$$x = 0.5$$

- **2. a.** $x \in]-1$; 0[**b.** $x \in]-\infty$; 0[U]0,5; $+\infty[$

75 1. Résoudre algébriquement dans [0; +∞[:

- **a.** l'équation $\sqrt{x} = 5$; **b.** l'inéquation $\sqrt{x} < 3$.

2. Résoudre algébriquement dans $]-\infty$; $0[\cup]0$; $+\infty[$:

- **a.** l'équation $\frac{1}{r} = -7$; **b.** l'inéquation $\frac{1}{r} < 6$.

Capacité 6, p. 219

75 1. a. x = 25

b. $x \in [0; 9]$

2. a.
$$x = -\frac{1}{7}$$
 b. $x \in]-\infty; 0[U]\frac{1}{6}; +\infty[$

Pour les exercices 76 à 81, résoudre les équations et inéquations.

76 a. $\frac{1}{r} = 2$

b. $\frac{1}{x} \le 2$ **c.** $\frac{1}{x} > 2$

777 a. $\frac{1}{x} = -4$ b. $\frac{1}{x} \le -4$ c. $\frac{1}{x} < -4$

78 a. $\frac{1}{x} \le \frac{1}{3}$ b. $\frac{1}{x} \ge \frac{2}{7}$ c. $\frac{1}{x} > 1$

76 a. $x = \frac{1}{2}$

b. $x \in]-\infty$; $0[\cup [\frac{1}{2}; +\infty[$ **c.** $x \in]0; \frac{1}{2}[$

77 a. L'équation $\frac{1}{x} = -4$ a pour solution $x = \frac{1}{-4}$, soit x = -0.25.

b. Les solutions de l'inéquation $\frac{1}{r} \leq -4$ sont les abscisses des points de la courbe représentative de la fonction inverse qui sont « au-dessous » ou sur la droite d'équation y = -4. En s'aidant de la courbe de la fonction inverse et d'après la réponse à la question a., l'ensemble

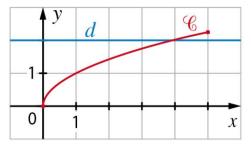
solution de l'inéquation $\frac{1}{x} \le -4$ est l'intervalle [-0.25 ; 0 [. c. Les solutions de l'inéquation $\frac{1}{x} < -4$ sont les mêmes que celles de l'inéquation $\frac{1}{x} \le -4$, mais on enlève les solutions de l'équation $\frac{1}{r} = -4$.

Ainsi, l'ensemble solution de l'inéquation $\frac{1}{x} < -4$ est l'intervalle]-0,25 ; 0[.

78 a. $x \in]-\infty$; 0[\cup [3; $+\infty$ [**b.** $x \in]0$; $\frac{7}{2}$ [

c. $x \in [0; 1[$

23 On a tracé ci-contre & sur I = [0; 5] et la droite d d'équation y = 2.



Déterminer graphiquement l'ensemble des points de € qui

sont « au-dessous » de la droite d, puis résoudre l'inéquation \sqrt{x} < 2 dans l.

- 23 Graphiquement, c'est l'ensemble des points de C dont l'abscisse est dans l'intervalle [0 ; 4[. Ainsi, \sqrt{x} < 2 \Leftrightarrow $x \in$ [0 ; 4[.
- 72 1. Représenter graphiquement la fonction racine carrée.
- 2. Résoudre graphiquement les équations :

a.
$$\sqrt{x} = 1$$
;

b.
$$\sqrt{x} = 2$$
.

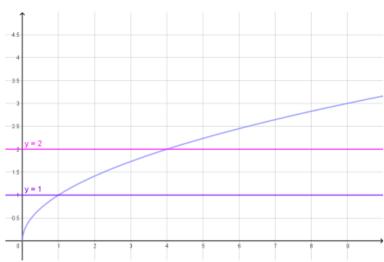
3. Résoudre graphiquement les inéquations :

a.
$$\sqrt{x} < 1$$
; **b.** $\sqrt{x} < 2$.

b.
$$\sqrt{x}$$
 < 2.

Capacité 5, p. 219

<mark>72</mark> 1.



2. a.
$$x = 1$$

b.
$$x = 4$$

3. a.
$$x \in [0; 1[$$

b.
$$x \in [0; 4[$$

80 a.
$$\sqrt{x} = 6$$

b.
$$\sqrt{x} \le 6$$
 c. $\sqrt{x} < 6$

$$c. \sqrt{x} < 6$$

81 a.
$$\sqrt{x} \leq 8$$

b.
$$\sqrt{x} \ge 5$$
 c. $\sqrt{x} > 2$

$$<.\sqrt{x}>$$

81 Le corrigé détaillé de cet exercice est disponible dans le manuel numérique enseignant, le manuel numérique élève et le site élève lycee.editions-bordas.fr.

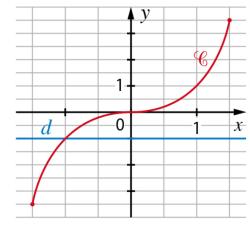
a.
$$x \in [0; 64]$$

$$\mathbf{c.} \ x \in]4; +\infty[$$

Exercices 16p228,37p230,43,44p230,66p231

16 On a tracé ci-contre \mathscr{C} sur I = [-1,5; 1,5] et la droite d d'équation y = -1.

- 1. Résoudre graphiquement dans I l'équation $x^3 = -1$.
- **2. a.** Déterminer graphiquement l'ensemble des points de \mathscr{C} qui sont « au-dessous » de la droite d.



b. Résoudre alors l'inéquation $x^3 < -1$ dans l.

16 1. On regarde l'abscisse du point d'intersection entre la courbe C et la droite d. La solution de l'équation $x^3 = -1$ dans I est -1.

- **2. a.** Les points de C qui sont « au-dessous » de la droite d sont tous les points dont l'abscisse est comprise entre -1,5 inclus et -1 exclu, soit dans l'intervalle [-1,5;-1[.
- **b.** L'ensemble solution de l'inéquation $x^3 < -1$ dans I est l'ensemble des abscisses des points de C qui sont « au-dessous » de d. D'après la question précédente, l'ensemble solution de l'inéquation $x^3 < -1$ dans I est donc [-1,5;-1[.

37 La courbe représentative de la fonction cube et la droite d'équation y = 8sont tracées ci-contre.

Par lecture graphique, résoudre dans [-2; 3] les équations et inéquations suivantes.

b.
$$x^3 \le 8$$

$$x^3 \ge 8$$

$$c. x^3 \ge 8$$
 $d. x^3 > 8$

b.
$$x \in [-2; 2]$$

c.
$$x \in [2; 3]$$

2

0

d.
$$x \in]2; 3]$$

x

43 a.
$$x^3 = 6$$

b.
$$x^3 \le 6$$

$$x^3 < 6$$

44 a.
$$x^3 \le 8$$

b.
$$x^3 \ge 4$$

$$x^3 > 2$$

43 a.
$$x = \sqrt[3]{6}$$

b.
$$x \in]-\infty; \sqrt[3]{6}]$$
 c. $x \in]-\infty; \sqrt[3]{6}[$

$$\mathbf{c.} \ x \in]-\infty; \sqrt[3]{6}$$

44 a.
$$x \in]-\infty; 2]$$

b.
$$x \in [\sqrt[3]{4}; +\infty[$$

44 a.
$$x \in]-\infty$$
; 2] **b.** $x \in [\sqrt[3]{4}; +\infty[$ **c.** $x \in [\sqrt[3]{2}; +\infty[$

66 a.
$$5 - 2x^3 \le 4x^3 - 11$$
 b. $-9 - x^3 > x^3 + 1$

b.
$$-9 - x^3 > x^3 + 1$$

66 a. L'inéquation $5-2x^3 \le 4x^3-11$ est équivalente à $-6x^3 \le -16$, soit $x^3 \ge \frac{-16}{-6}$,

ou
$$x^3 \ge \frac{8}{3}$$
. De plus, l'équation $x^3 = \frac{8}{3}$ admet pour solution $x = \sqrt[3]{\frac{8}{3}}$.

En s'aidant de la courbe de la fonction cube, on trouve alors que l'ensemble solution de l'inéquation $x^3 \ge \frac{8}{3}$ est l'intervalle $\left[\sqrt[3]{\frac{8}{3}} \right]$; $+\infty$ [.

Ainsi, l'ensemble solution de l'inéquation $5 - 2x^3 \le 4x^3 - 11$ est l'intervalle $\left[\sqrt[3]{\frac{8}{3}} \right]$; $+\infty$ [.

b. L'inéquation
$$-9 - x^3 > x^3 + 1$$
 est équivalente à $-2x^3 > 10$ soit $x^3 < \frac{10}{-2}$, ou $x^3 < -5$.

De plus, l'équation $x^3 = -5$ admet pour solution $x = \sqrt[3]{-5}$.

En s'aidant de la courbe de la fonction cube, on trouve alors que l'ensemble solution de l'inéquation $x^3 < 5$ est l'intervalle $]-\infty$; $\sqrt[3]{-5}$ [.

Ainsi, l'ensemble solution de l'inéquation $-9 - x^3 > x^3 + 1$ est l'intervalle $] - \infty$; $\sqrt[3]{-5}$ [.