Exercice: mathssa.fr/classification

Quel est le plus petit ensemble de nombres auquel appartient chacun des nombres suivants ?

1)
$$-\frac{1}{4}$$
 2) $\frac{2}{6}$

$$2)\frac{2}{6}$$

3) 1,333 4)
$$\sqrt{36}$$
 5) $\sqrt{6}$ 6) $\frac{-3(\sqrt{2})^2}{12}$

Méthode: Reconnaître la nature d'un nombre

mathssa.fr/classification

Quel est le plus petit ensemble de nombres auquel appartient chacun des nombres suivants ?

1)
$$-\frac{1}{4}$$

2)
$$\frac{2}{6}$$

4)
$$\sqrt{36}$$

5)
$$\sqrt{6}$$

1)
$$-\frac{1}{4}$$
 2) $\frac{2}{6}$ 3) 1,333 4) $\sqrt{36}$ 5) $\sqrt{6}$ 6) $\frac{-3(\sqrt{2})^2}{12}$

Correction

$$1) - \frac{1}{4} = -0.25$$

Donc $-\frac{1}{A} \in \mathbb{D}$ car le nombre de décimales après la virgule est en nombre fini.

$$(2)\frac{2}{6} = \frac{1}{3} \approx 0.3333 \dots$$

Donc $\frac{2}{6} \in \mathbb{Q}$ car $\frac{2}{6}$ s'écrit uniquement sous forme d'une fraction et ne peut pas s'écrire sous forme décimale.

3) 1,333 $\in \mathbb{D}$ car le nombre de décimales après la virgule est en nombre fini.

$$4)\sqrt{36} = 6$$

Donc $\sqrt{36} \in \mathbb{N}$ car 6 est un nombre entier positif.

5)
$$\sqrt{6} \approx 2,4495 ...$$

Donc $\sqrt{6} \in \mathbb{R}$ car c'est un nombre irrationnel.

6)
$$\frac{-3(\sqrt{2})^2}{12} = \frac{-3 \times 2}{12} = \frac{-6}{12} = -0.5$$

Donc $\frac{-3(\sqrt{2})^2}{12} \in \mathbb{D}$ car le nombre de décimales après la virgule est en nombre fini.

Exercice sur les ensembles de nombres:

Mettre une croix lorsque le nombre appartient à l'ensemble indiqué

1.

1.												
	0,777	7 25	3 – √36	1 6	$\frac{\pi}{4}$	10-4	-14,6	197 2	10 ¹⁰	3,14159	$\sqrt{\pi^2}$	$\frac{\sqrt{25}}{\sqrt{9}}$
$\in \mathbb{N}$												
$\in \mathbb{Z}$												
∈D												
$\in \mathbb{Q}$												
$\in \mathbb{R}$												

2.

	$\sqrt{100}$	-103	10 -4	4,555	-1,44	$\frac{-60}{4}$	$\frac{-25}{\sqrt{100}}$	π	$\frac{-60\sqrt{2}}{\sqrt{8}}$	51022 ,66	41× 10 ⁻³	$\frac{1}{3} + \frac{1}{6}$	$\frac{1}{\frac{1}{3} + \frac{1}{6}}$
$\in \mathbb{N}$													
$\in \mathbb{Z}$													
€D													
$\in \mathbb{Q}$													
$\in \mathbb{R}$													

3.

	0	<u>81</u> 4	$\sqrt{\frac{81}{4}}$	- 104	517	-675,94	√2	10-9	4-√64	- 28 x 5/2	<u>16</u> 9	$\sqrt{\frac{16}{9}}$	$\frac{25}{\sqrt{10^4}}$	- √441 7	$\frac{4\sqrt{3}}{\sqrt{27}}$
$\in \mathbb{N}$															
$\in \mathbb{Z}$															
∈D															
$\in \mathbb{Q}$															
$\in \mathbb{R}$															

	0	3,5	4,0	-7	$\frac{7}{3}$	12 3	$\frac{1}{2}$	3,1	$\sqrt{2}$	1/2	<u>-84</u> 14	$\frac{-7}{20}$	81 4	$\sqrt{\frac{81}{4}}$	10	2,35 <u>35</u>	0,1235 14527 89
$\in \mathbb{N}$																	
$\in \mathbb{Z}$																	
€D																	
$\in \mathbb{Q}$																	
$\in \mathbb{R}$																	

Correction des exercices sur les ensembles de nombres:

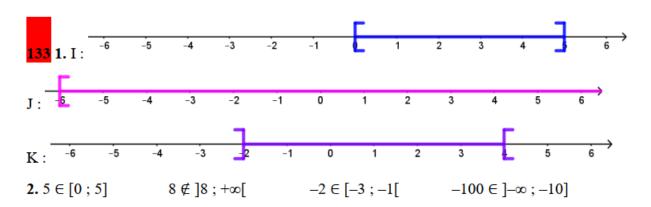
1.

	0,777		$3 - \sqrt{36}$ $= 3 - 6$ $= -3$	$\frac{1}{6}$	$\frac{\pi}{4}$	10 ⁻⁴ =0,0 001	-14,6	$\frac{197}{2}$ =98,5	10 ¹⁰ =10000 000000	3,141 59	$\sqrt{\pi^2} = \pi $ $= \pi$ $car \pi > 0$	$\frac{\sqrt{25}}{\sqrt{9}} = \frac{5}{3}$
$\in \mathbb{N}$									*			
$\in \mathbb{Z}$			*						*			
∈D	*	*	*			*	*	*	*	*		
$\in \mathbb{Q}$	*	*	*	*		*	*	*	*	*		*
$\in \mathbb{R}$	*	*	*	*	*	*	*	*	*	*	*	*

2.

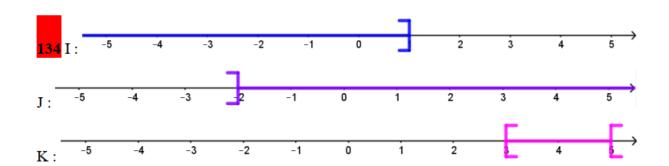
	$ \sqrt{100} $ =10	-10 ³	10 -4	4,555	-1,44	$\frac{-60}{4}$	$\frac{-25}{\sqrt{100}}$	π	$\frac{-60\sqrt{2}}{\sqrt{8}}$	51022 , 66	41×10 ⁻³	$\frac{1}{3} + \frac{1}{6}$	$\frac{1}{\frac{1}{3} + \frac{1}{6}}$
$\in \mathbb{N}$	*												*
$\in \mathbb{Z}$	*	*				*			*				*
€D	*	*	*		*	*	*		*	*	*	*	*
$\in \mathbb{Q}$	*	*	*	*	*	*	*		*	*	*	*	*
$\in \mathbb{R}$	*	*	*	*	*	*	*	*	*	*	*	*	*

3.


	0	81 4	$\sqrt{\frac{81}{4}}$	- 104	<u>5</u> 7	-675,94	$\sqrt{2}$	10-9	4-√64	$-\frac{28}{35} \times \frac{5}{2}$	16 9	$\sqrt{\frac{16}{9}}$	$\frac{25}{\sqrt{10^4}}$	$-\frac{\sqrt{441}}{7}$	$\frac{4\sqrt{3}}{\sqrt{27}}$
$\in \mathbb{N}$	*														
$\in \mathbb{Z}$	*			*					*	*				*	
€D	*	*	*	*		*		*	*	*			*	*	
$\in \mathbb{Q}$	*	*	*	*	*	*		*	*	*		*	*	*	*
$\in \mathbb{R}$	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Correction des exercices 133,134,135,136,137,138,139,140,141,142p70-71

133 1. Représenter sur la droite numérique les intervalles :

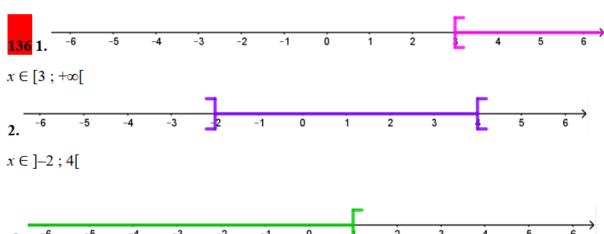

$$I = [0; 5];$$
 $J = [-6; +\infty[;$ $K =]-2; 4[.$

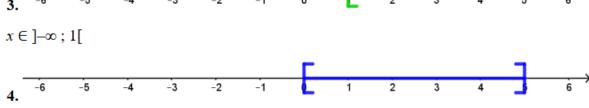
2. Est- ce que 5 appartient à [0; 5]? Est-ce que 8 appartient à $[8; +\infty[$? Est-ce que -2 appartient à [-3; -1[? Est-ce que -100 appartient à $]-\infty; -10]$?

134 Représenter sur la droite numérique les intervalles :

$$I =]-\infty; 1];$$
 $J =]-2; +\infty[;$ $K = [3; 5[.$

135 Recopier et compléter avec le symbole d'appartenance ∈ ou de non-appartenance ∉.


a.
$$3 \in]-1;8]$$


c.
$$10^{-3}$$
 ∈ $[0; +\infty[$

$$\mathbf{d}.\pi \in [3,14;3,15[$$

f. 0
$$\in [-\sqrt{2}; \sqrt{2}[$$

- 136 Dans chaque cas, représenter sur un axe l'ensemble des réels x donné, puis l'écrire sous la forme d'un intervalle.
- 1. L'ensemble des réels x supérieurs ou égaux à 3.
- **2.** L'ensemble des réels *x* strictement compris entre –2 et 4.
- 3. L'ensemble des réels x strictement inférieurs à 1.
- 4. L'ensemble des réels positifs ou nuls et inférieurs à 5.

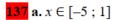
$$x \in [0; 5]$$

Pour les exercices 137 à 139, traduire chaque inégalité ou encadrement qui suit sous forme d'appartenance du réel x à un intervalle, et représenter cet intervalle sur la droite graduée.

137 a.
$$-5 \le x \le 1$$

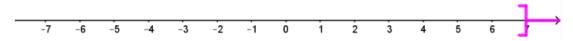
b.
$$x < 4$$

Capacité 7, p. 59

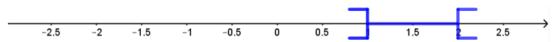

b.
$$x \ge 0.5$$

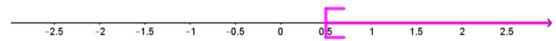
$$x \le 10^{-1}$$

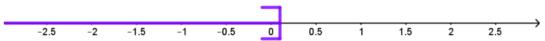
139 a.
$$\frac{1}{2} \le x < \frac{3}{4}$$
 b. $x > \frac{\pi}{2}$ **c.** $x < -3$

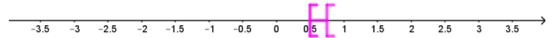

b.
$$x > \frac{\pi}{2}$$

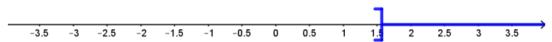
c.
$$x < -3$$

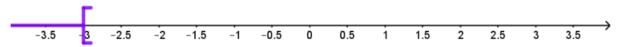





138 a. $x \in]1; 2[$


b. $x \in [0,5; +\infty[$


c. $x \in]-\infty$; 10^{-1}]



139 a. $x \in \left[\frac{1}{2}; \frac{3}{4}\right]$

$$\mathbf{b} \cdot x \in \left] \frac{\pi}{2} \right] + \infty [$$

b.
$$x > -0.5$$

b.
$$x > -0.5$$
 c. $-7 < x \le 0$

d. $x < \pi$

Pour les exercices 140 et 141, traduire l'appartenance d'un nombre réel aux intervalles donnés par une (ou des) inégalité(s).

a.
$$5 \le x \le 9$$
 b. $x > -0.5$

b.
$$x > -0.5$$

141 a.
$$I = [-1; 10[$$

c.
$$L =]-7;0]$$

b.
$$J =]-0.5; +\infty[$$

d. L =
$$]-\infty$$
; $\pi[$

c.
$$-7 < x \le 0$$

d.
$$x < \pi$$

b.
$$J = [1; +\infty[$$

d.
$$K =]-\infty$$
; $\pi[$

a) $x \in [-1; 10[$ équivaut à $-1 \le x < 10.$

b) $x \in [1; +\infty[$ équivaut à $x \ge 1$.

c) $x \in]-7;0]$ équivaut à $-7 < x \le 0$.

 $d(x \in]-\infty; \pi[$ équivaut à $x < \pi$.

142 🕪 oral Vrai ou Faux ?

Indiquer si les affirmations suivantes sont vraies ou fausses, puis justifier.

- 1. π appartient à l'intervalle]3 ; 3,14].
- **2.** L'ensemble des réels x tels que $3 \le x$ est l'intervalle $]-\infty$; 3].
- 3. $x \in [-1; 7]$ est équivalent à $7 > x \ge -1$.
 - **142 1.** Faux : $\pi \approx 3,14159 > 3,14$.
 - 2. Faux : c'est l'intervalle [3 ; $+\infty$ [.
 - 3. Vrai: $7 > x \ge -1 \Leftrightarrow -1 \le x < 7 \Leftrightarrow x \in [-1; 7[$.